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ABSTRACT

We propose a tuning-free Bayesian approach to learn a set
of sparse graphical models, in which adjacent graphs share
similar structures. This model can be applied to estimat-
ing dynamic networks that evolve smoothly with regard to a
covariate (e.g., time). Specifically, a novel structured spike
and slab prior is constructed. This prior allows time-varying
sparsity pattern by smoothing the spike probabilities across
time using a Gauss-Markov chain. An efficient variational
Bayes (VB) algorithm is then derived to learn the model, and
is compared to related frequentist methods in the literature.
We further extend the proposed mechanism to learn graphical
models for multivariate time series in frequency domain. As
an example, we analyze scalp electroencephalograms (EEG)
recordings of patients at early stages of Alzheimer disease
(AD), and quantify the loss of synchrony in comparison with
control subjects.

Index Terms— Dynamic graphical models, structure,
sparse Bayesian learning, time series

1. INTRODUCTION

The recent decades have witnessed a rapid development of
graphical models, since they provide a refined language to
describe complicated systems and further facilitate the deriva-
tion of efficient learning and inference algorithms [1]. While
an extensive literature revolves around learning sparse graph-
ical models from independent and identically distributed
(i.i.d.) data (see [2, 3] and references therein), less research
has been conducted on graphical models for observations
drawn from a distribution that varies with a covariate (e.g.
time or space).1 For instance, during epileptic seizures, func-
tional brain networks are shown to evolve across time through
a sequence of distinct topologies [4]. Estimating such net-
works can show how the dysrhythmia of the brain propagates
and may help the treatment of epilepsy.

Existing works on learning time-varying networks can be
categorized into three groups. The first one [5]-[8] considers
the temporal dependence by smoothing the sufficient statis-
tics across time using kernels. Given the temporally depen-

1To provide a more readable presentation, we assume the covariate is time
in this paper unless specified otherwise.

dent sufficient statistics, the sparse graphical models are then
estimated individually at each time point. The estimation
problem can be solved by maximizing the likelihood with
an `1 penalty on the graph sparsity. However, such methods
are only applicable in the settings where graphs continuously
and smoothly evolve over time [9], whereas in practice the
smoothness assumption can be broken at certain time points,
such as the onset of seizure in the above example. Moreover,
unexpected variability may arise between two adjacent net-
works since each network are estimated independently [10].
To mitigate these issues, the second group of dynamic net-
work models [9, 11, 12] capture the temporal dependence by
enforcing `1 or `2 norm constraints on the difference of two
consecutive graphs. The resulting problem is usually convex,
and can be solved by the alternating directions method of mul-
tipliers (ADMM). Finally, the third group combines both two
aforementioned approaches [10, 13].

Unfortunately, the dynamic graphical models inferred
by all three methods are sensitive to the tuning parameters,
including the kernel bandwidth and the penalty parameters.
Typical data-driven methods for selecting these parameters
are cross validation (CV) and Akaike information criterion
(AIC) [10]. However, heavy computational burden comes
along with these methods; the learning algorithm needs to
be run once for every possible value of the parameters in
a predefined candidate set (which may be large) before the
one associated with the largest AIC (or CV) score is cho-
sen. Moreover, it has been demonstrated in [14] that neither
CV nor AIC yields satisfying results for graphical model
selection.

In this paper, we take a Bayesian approach to construct
time-varying graphical models. The major benefit of the pro-
posed algorithm is that all parameters can be estimated in an
automatic manner from the data without tuning. In particu-
lar, we focus on Gaussian graphical models that characterize
the conditional independence (i.e., absence of edges) by zero
entries in the precision (inverse covariance) matrix. As a re-
sult, our objective is to infer the time-varying precision ma-
trix. To this end, we propose a novel structured spike and slab
prior. Specifically, each off-diagonal entry of the precision
matrix can be factorized as the product of a Bernoulli and
a Gaussian distributed variable, and these two variables are
further coupled across time via Gauss-Markov chains (i.e.,



thin-membrane models [15]). We then develop an efficient
VB algorithm to learn the model. Numerical results show
that when compared with the frequentist method [11]-[12],
the proposed method achieves better performance in terms of
estimation accuracy with significantly less amount of compu-
tational time.

Interestingly, the proposed model can be directly applied
to infer graphical models for multiple time series in frequency
domain [16]. As an illustration, we apply the proposed model
to multi-channel EEG signals of AD patients and healthy
control subjects; we demonstrate that the graphical mod-
els inferred from the AD EEG signals are more sparse than
those for healthy control subjects. Note that this effect is
not always easily detectable, especially for patients in the
pre-symptomatic phase. Thus, the proposed model may offer
another useful tool for early detection of AD.

This paper is structured as follows. We first present our
Bayesian model in Section 2, and then derive the VB algo-
rithm in Section 3. In Section 4, we show the numerical re-
sults for both synthetic and real data. Finally, we close this
paper with conclusions in Section 5.

2. DYNAMIC GRAPHICAL MODELS

In this section, we first introduce the proposed structured
spike and slab prior, and subsequently construct the Bayesian
model for time-varying graphical models. Finally, we explain
how to exploit the proposed model to infer graphical models
for stationary time series in frequency domain.

2.1. Structured Spike and Slab Prior

Suppose that K1:T
ij is off-diagonal entry (i, j) of the P × P

precision matrix K with time from 1 to T . A spike and slab
prior on Kt

ij can be defined as [17]:

Kt
ij ∼ ηtijN (µtij , ν

t
ij) + (1− ηtij)δ0, (1)

where N (µtij , ν
t
ij) is a Gaussian distribution with mean µtij

and variance νtij , δ0 is a Kronecker delta function, and ηtij ∈
[0, 1] determines probability of Kt

ij = 0 (i.e., the spike prob-
ability). By decreasing ηtij to 0, this prior would shrink Kt

ij

to 0, thus encouraging sparsity in K. The above expression
can also be equivalently written as [18]:

Kt
ij = stijJ

t
ij (2)

J tij ∼ N (µtij , ν
t
ij), (3)

stij ∼ Ber(ηtij), (4)
where Ber(ηtij) is a Bernoulli distribution with successful
probability ηtij . To obtain Kt that changes smoothly with t,
we need to impose smoothness priors on both stij and J tij .
First, let us focus on stij . One tempting approach is to assume
s1:Tij forms a binary Markov chain as in [18, 19]. However,
as pointed out in [20], the resulting hidden Markov model
(HMM) may induce unrealistically rapid switching between
states. This problem can be eliminated by introducing a

self-transition bias, giving rise to a sticky HMM [20]. Un-
fortunately, VB learning of the sticky HMM is prone to local
maxima [21]. Instead of using binary Markov chains, Ren et
al. [21] assume that ηtij = g(βtij), where g(·) is the standard
logistic function, and smoothen βtij across t based on kernels.
Although this method is amenable to the VB framework, the
bandwidth of the kernels can only be estimated via Monte
Carlo methods, thus slowing down the entire learning pro-
cess. An alternative approach is proposed in [22], in which
βtij is drawn from a Gaussian process and g(·) is the standard
Gaussian cumulative distribution function. The parameters of
the Gaussian process, however, have to be defined in advance;
otherwise the computational cost of learning these parameters
is O(T 3). Here, we specify g(·) to be the standard logistic
function due to its utility in the VB framework [21]. We fur-
ther assume βtij forms a Gauss-Markov chain, in particular, a
thin-membrane model [15]. The resulting prior on stij can be
expressed as:
p(stij |βtij) = Ber(stij ; g(β

t
ij)), (5)

g(βtij) =
1

1 + exp(−βtij)
, (6)

p(β1:T
ij ) ∝ λ

T−1
2 exp

(
− λ

2

T∑
t=2

(
βtij − βt−1ij

)2)
, (7)

where λ is the smoothness parameter controlling the smooth-
ness of βtij across t. We further impose a conjugate Gamma
prior on λ:

p(λ) = Gamma(λ; a0, b0) ∝ λa0−1 exp(−b0λ). (8)
The parameters a0 and b0 are set to be small (e.g., a0 =
b0 = 10−10) such that the prior is non-informative. As λ
increases, the thin-membrane model reduces the difference
between consecutive βtij and βt−1ij , and the resulting prior
favors that stij = st−1ij . Similarly, to promote the smooth
variation of J tij across t, we impose a thin-membrane model
prior with smoothness parameter γ on J tij , and a Gamma prior
Gamma(c0, d0) on γ.

2.2. Time-Varying Graphical Models

Let x1:T
1:P denote the observations of the Gaussian graphical

models from 1 to t. Then,

p(xt|Kt) ∝ det(Kt)
1
2 exp

(
− 1

2
xt
′
Ktxt

)
, (9)

where xt′ is the (conjugate) transpose of xt. In our model, to
facilitate variational inference, we further relax the equality
constraint in Eq. (2) as a Gaussian distribution:

p(Kt
ij |stij , J tij , α) ∝

√
α exp

(
− α

2

(
Kt
ij − stijJ tij

)2)
.

This resembles the Lagrangian multiplier in the frequentist
methods [9, 12, 10]. As the learning algorithm proceeds, α
will take a very large value, and the above Gaussian distri-
bution degenerates to a Kronecker delta function δ0(Kt

ij −
stijJ

t
ij). Note that diagonal elements Kt

ii in Kt also follow
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Fig. 1: Bayesian Covariation-Varying Graphical Models.

the above distribution, in which stii is set to be 1 for all t. As
before, a conjugate Gamma prior Gamma(e0, f0) is imposed
on α. In summary, the overall Bayesian model can be factor-
ized as:
p(x1:T ,K1:T , J1:T , s1:T ,β1:T , α, γ, λ)

=p(α)p(λ)p(γ)

t∏
t=1

[
p(xt|Kt)

P∏
i=1

P∏
j=i

p(Kt
ij |stij , J tij , α)

· p(stij |βtij)
] P∏
i=1

P∏
j=i

[ T∏
t=2

p(βtij |βt−1ij , λ)p(J tij |J t−1ij , γ)

]
.

The graphical model representation of the proposed model is
shown in Fig 1.

2.3. Graphical Models for Time Series

In this section, we discuss how to exploit the proposed model
to learn interactions among P univariate stationary Gaussian
processes (i.e., time series) xt1:P . A graphical model G =
(V, E) for xt can be constructed by letting an edge (i, j) 6∈
E denote that the two entire time series x1:T

i and x1:T
j are

conditionally independent given the remaining collection of
time series x1:T

V|i,j , where V|i, j denotes all nodes in V except
i and j, that is [23]:

cov(xti,x
t+τ
j |x1:T

V|i,j) = 0, ∀τ. (10)
In other words, the lagged conditional covariance equals 0
for all time tag τ . On the other hand, the conditional depen-
dence can also be defined in frequency domain of the time
series. Concretely, we first define the spectral density ma-
trix as the Fourier transform of the lagged covariance matrix
cov(xt,xt+τ ):

Sω =
∑
τ

cov(xt,xt+τ ) exp(−iωτ), (11)

for ω ∈ [0, 2π]. Let Kω = (Sω)−1, the conditional indepen-
dence between xi and xj holds if and only if [16, 23]

Kω
ij = 0, ∀ω. (12)

This suggests that one common zero entry in the inverse
spectral density matrices across a certain frequency band is
equivalent to the conditional independence between the cor-
responding two time series in this frequency band. Therefore,
for a multivariate time series, we aim to infer the inverse
spectral density matrices Kω .

Here, we follow the state-of-the-art Whittle approxima-
tion framework [24]: suppose that fω1:P is the discrete Fourier
transform of x1:T

1:P at frequency ω, then fω1:P are independent
complex Gaussian random variables with mean zero and pre-
cision matrix given by the inverse spectral density matrix Kω

at the same frequency. As a result, we can learn Kω that
changes smoothly with ω from fω using the proposed model
in Section 2.2.

In this scenario, the covariate is the frequency ω. Note
that the proposed model is not directly applicable in time do-
main, since the assumption that xt and xt−1 are conditionally
independent given Kt and Kt−1 is not satisfied for time se-
ries. Instead, in the settings of Whittle approximation [24],
Fourier coefficients fω at different frequencies are condition-
ally independent given Kω .

3. VARIATIONAL BAYES LEARNING

In this section, we derive a mean field VB algorithm to
learn the above Bayesian model (cf. Section 2.2). The
VB algorithm seeks to approximate the intractable poste-
rior distribution p(θ|x1:T ) with a tractable variational dis-
tribution q(θ) by minimizing the KL divergence between
these two distributions KL(q|p) =

∫
q log(q/p), where

θ = {K1:T , J1:T , s1:T ,β1:T , α, γ, λ}. This is equivalent to
maximizing a lower bound of the data evidence. Concretely,
we factorize the variational distribution as:
q(θ) = q(α)q(λ)q(γ)

∏
i

∏
j

q(J1:T
ij )q(β1:T

ij )
∏
t

q(Kt
ij)q(s

t
ij).

The VB update rules can be then derived as follows. For the
precision matrices Kt,

q(Kt) ∝ exp(〈log p(xt|Kt)〉+ 〈log p(Kt|J t, st, α)〉)

∝ exp

(
1

2
log detKt − 1

2
xt
′
Ktxt

− 1

2
〈α〉〈‖Kt − st � J t‖22〉

)
, (13)

where 〈·〉 denotes expectation, ‖ · ‖2 denotes `2 norm, and �
is a Hadamard product. Due to the non-conjugacy between
p(xt|Kt) and p(Kt|J t, st, α), it is intractable to compute the
normalization constant of the above expression. Instead, we
specify q(Kt) as a product of independent Gaussian distribu-
tions

∏
i

∏
j q(K

t
ij), whose mean [µtK ]ij and variance [νtK ]ij

can be determined by Laplace approximation [25]. Specifi-
cally, equating to 0 the gradient of the exponential part in (13)



Algorithm 1 VB Learning of Time-Varying Graphical Mod-
els

Input: x1:T ;
Output: q(K1:T ), q(s1:T );
Initialize the varitional parameters and iteration number κ = 1;
Repeat
1. Update q(Kt

ij) = N (Kt
ij , [µ

t
K ]ij , [ν

t
K ]ij):

1.1. V DV ′ = 1
2
xtxt

′ − 〈α〉〈st〉 � 〈Jt〉,

1.2. D̃ii = −Dii +
√
D2
ii + 2〈α〉/2〈α〉,

1.3. µtK = V D̃V ′,
1.4. νtK = 1

2
diag(µtK

−1
)diag(µtK

−1
)′ + 〈α〉.

2. Update q(stij) = Ber(stij ; η̃
t
ij):

2.1. η̃tij = g
(
〈βtij〉 − 〈α〉(〈Jtij

2〉 − 2〈Kt
ij〉〈Jtij〉)

)
.

3. Update q(β1:T
ij ):

3.1. for t = 1 or T , φ(βtij) ∝ exp(−(h(ζtij)+〈λ〉/2)βtij
2
+(〈stij〉−

0.5)βtij),

3.2. for 2 < t < T −1, φ(βtij) ∝ exp(−(h(ζtij)+〈λ〉)βtij
2
+(〈stij〉

−0.5)βtij),
3.3. φ(βtij , β

t−1
ij ) ∝ exp(−〈λ〉βtijβ

t−1
ij ),

3.4. Compute mean [µtβ ]ij and variance [νtβ ]ij via belief propagation
in the Gauss-Markov chain with unary potential φ(βtij) and pair-

wise potential φ(βtij , β
t−1
ij ).

4. Update ζtij =
√

[µtβ ]
2
ij + [νtβ ]ij .

5. Update q(J1:T
ij ) in a similar manner as q(β1:T

ij ).
6. Update q(α), q(λ), and q(γ).
Until convergence criterion is met

w.r.t. Kt yields an equation of the mean matrix µtK :
1

2
µtK
−1 − 〈α〉µtK =

1

2
xtxt

′ − 〈α〉〈st〉 � 〈J t〉. (14)

Letting V DV ′ denote the eigendecomposition of 1
2x

txt
′ −

〈α〉〈st〉 � 〈J t〉, the solution of the above equation is given
by µtK = V D̃V ′, where D̃ is the diagonal eigenvalue matrix
with

D̃ii =
−Dii +

√
D2
ii + 2〈α〉

2〈α〉
. (15)

It follows from (15) that D̃ii is guaranteed to be positive, and
therefore, µtK is always positive definite during the inference
process. On the other hand, the variance of q(Kt

ij) is given
by the negative Hessian at [µtK ]ij , that is,

νtK =
1

2
diag(µtK

−1
)diag(µtK

−1
)′ + 〈α〉, (16)

where diag(·) is the diagonal of a matrix.

Next, we turn our attention to the update rule of βtij . Its
likelihood involves the logistic function, which spoils the
conjugate-exponential structure. We overcome this limitation
by utilizing a variational lower bound for g(βtij) based on
bounding log convex functions [26]:

g(βtij) ≥ g(ζtij) exp
(
βtij − ζtij

2
− h(ζtij)

(
βtij

2 − ζtij
2))

,

where h(ζtij) = tanh(ζtij/2)/(4ζ
t
ij), and ζtij is a variational

parameter to be estimated. The bound is exact at ζtij = ±βtij .

Given ζtij , the Gaussian prior on β1:T
ij is now conjugate to the

likelihood of βtij , and the mean [µtβ ]ij and variance [νtβ ]ij of
q(βtij) can be obtained via belief propagation in the Gauss-
Markov chain. After obtaining q(βtij), the variational param-
eter ζtij can be updated as:

ζtij =
√
[µtβ ]

2
ij + [νtβ ]ij . (17)

For the remaining parameters s1:Tij , J1:T
ij , λ, γ, and α, the

corresponding prior and likelihood are within the conjugate-
exponential family, and hence, we omit the detailed deriva-
tions of their variational distributions. We summarize the VB
algorithm in Algorithm 1. The resulting computational com-
plexity of the proposed algorithm is O(TP 3). As the com-
plexity scales linearly in T , the model is applicable to prob-
lems with large T .

4. EXPERIMENTAL RESULTS

In this section, we validate the proposed model via both syn-
thetic data and real data. Particularly, we benchmark the
proposed model (referred to as VB-TVGM) with 1) the fre-
quentist method for learning time-varying graphical models
(referred to as OPT-TVGM) [9, 12], 2) the graphical lasso
(i.e., glasso) for learning sparse graphical models from i.i.d.
data [2]. The penalty parameters in the latter two methods are
selected by AIC [10] and stability selection [27] respectively.

4.1. Synthetic Data

We simulate synthetic Gaussian distributed data from both
relatively smoothly and abruptly changing precision matrix.
The dimension of the data is P and the sample size is T . For
both scenarios, we first randomly partition all off-diagonal el-
ements into two sets: 10% of non-zeros and 90% of zeros.
Next, in the first case, we randomly select n elements from
each set. For the n elements chosen from the non-zero set,
we gradually shrink them to 0 as a linear function of t. Sim-
ilarly, for the n elements selected from the zero set, we in-
crease them from zero at a rate linear in t. On the other hand,
under the second scenario, the precision matrix only changes
at t = tp, 2tp, · · · , where tp is a predefined period. At ev-
ery tp time step, we randomly choose n elements from the
non-zero set and set them to zero, while picking n elements
from the zero set and set them to non-zero. In our simulations,
T = 3000, P = 20, n equals 9 and 4 respectively in the first
and second scenario, and tp = 500.

For both cases, we compare the performance of the three
models in terms of accuracy of learning the graphical mod-
els, model fitting and computational time. More specifically,
to evaluate accuracy of graph model estimation, we consider
four criteria, including precision, recall, F1-score as well as
the normalized mean squared error (NMSE) between the true
and estimated precision matrices. Precision is defined as the
proportion of correctly estimated edges to all the edges in the



Table 1: Performance of the three models on synthetic data.

Scenario Model Precision Recall F1-score NMSE NegLogLLH Prm No. AIC Running Time

Smooth Case
VB-TVGM 1.00 0.74 0.85 1.71×10−2 -4.92×103 83.89 -9.67×103 79.49
OPT-TVGM 0.48 0.56 0.47 1.65 -3.71×104 146.18 -7.39×104 3.18×104

glasso 1.00 0.91 0.95 9.44×10−3 -3.95×103 77.62 -7.75×103 47.05

Abrupt Case
VB-TVGM 0.92 0.90 0.91 3.34×10−2 -4.37×103 92.37 -8.55×103 73.73
OPT-TVGM 0.45 0.70 0.49 1.68 -3.50×104 142.90 -6.97×104 3.24×104

glasso 0.83 0.90 0.86 3.38×10−2 -2.36×103 71.43 -4.58×103 36.22

estimated graph; recall is defined as the proportion of cor-
rectly estimated edges to all the edges the true graph; F1-score
is defined as 2·precision·recall/(precision+recall), which is a
weighted average of the precision and recall. In order to as-
sess model fitting, we evaluate the negative log-likelihood
(negLogLLH), the number of parameters (Prm No.) in the
model, and the AIC score. The results averaged over 100 data
sets in each scenario are listed in Table 1.

As can be seen from the table, OPT-TVGM is unable to re-
liably recover the true graphical model, although it introduces
the largest number of parameters. The lowest NegLogLLH
further suggests that this approach overfits the data. Indeed,
as as reported in [14], graphical model selection via AIC typ-
ically generates over-dense graphs. It is therefore imperative
to find a proper method to select the penalty parameters, and
this again highlights the significance of our work. In addi-
tion, OPT-TVGM is very time-consuming, and can be pro-
hibitive to large-scale data in practice. On the other hand, the
performance of glasso for model fitting is the worst among
the three models, since it fails to capture the temporal vari-
ations in Kt. Furthermore, by comparing the results of two
case studies, we can tell that this issue is exacerbated when
Kt changes more drastically. In contrast, the proposed VB-
TVGM successfully strikes a balance between data fitting and
graph recovery. Moreover, the model is free of tuning and the
computational time is several magnitudes smaller than that of
OPT-TVGM.

4.2. Scalp EEG of AD Patients

In this section, we consider the problem of inferring func-
tional brain networks from scalp EEG recordings. Specifi-
cally, we analyze two data sets. The first one contains 22
patients with mild cognitive impairment (MCI, a.k.a. pre-
dementia) and 38 healthy control subjects [28]. The second
one consists of 17 patients with mild AD (i.e., the first stage
of AD) and 24 control subjects [29]. Although AD cannot be
cured, current symptons-delaying medications are proven to
be more effective at early stages of AD [28]. On the other
hand, scalp EEG recording systems are inexpensive and po-
tentially mobile, thus making it a useful tool to screen a large
population for the risk of AD.

As explained in Section 2.3, we first perform fast Fourier
transform on all channels of EEG signals to obtain fω . Kω is
then inferred from fω by applying the proposed VB-TVGM.
After obtaining Kω for all frequencies ω, we further consider
several frequency ranges: 4−8Hz, 8−12Hz, and 12−30Hz,
as suggested by previous works on the same data sets [28, 29].
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Fig. 2: Boxplots for the number of edges resulting from VB-
TVGM.

For each frequency band, we infer the corresponding graphi-
cal models by finding the common zero patterns of all Kω in
this band. Finally, we count the number of edges in the graph-
ical models, which can be regarded as a measure of synchrony
between different EEG channels. We observe that graphical
models in 8−12Hz can best distinguish between patients and
controls for the MCI data, while 4 − 8Hz for the mild AD
data. We depict in Fig. 2 the boxplots of the number of edges
in the graphical models for both patients and control subjects.
Clearly, the graphical models for patients are more sparse than
that for healthy people, and this phenomenon becomes more
pronounced for Mild AD patients. Such findings are consis-
tent with the loss of synchrony within the EEG signals for AD
patients as reported in the literature [28, 29]. We further con-
duct Mann-Whitney test on the number of edges in the graph-
ical models from the EEG of patients and healthy controls.
The resulting p-values for the two data sets are respectively
3.53× 10−2 and 2.09× 10−4, which are statistically signifi-
cant. As a comparison, we filter EEG signals with a bandpass
filter (i.e., 8− 12Hz for MCI and 4− 8Hz for Mild AD), and
utilize glasso to learn graphical models in time domain. The
resulting p-values are 0.15 for the MCI data and 0.82 for the
Mild AD data. Obviously, the proposed model can more ac-
curately describe the perturbations in the EEG synchrony for
MCI and mild AD patients.

5. CONCLUSIONS

In this paper, we formulate the problem of estimating time-
varying graphical models from a Bayesian perspective. A
variational Bayes algorithm is then developed to learn the
model without tuning. We further apply the proposed model
to learn graphical models between multiple time series in fre-



quency domain. Numerical results from EEG data of MCI
and AD patients show that the proposed model may help di-
agnose AD from scalp EEG at an early stage.
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