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Image Classification of Unlabeled Malaria Parasites in Red Blood Cells
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Abstract— This paper presents a method to detect unlabeled
malaria parasites in red blood cells.The current ‘“gold standard”
for malaria diagnosis is microscopic examination of thick blood
smear, a time consuming process requiring extensive training.
Our goal is to develop an automate process to identify malaria
infected red blood cells. Major issues in automated analysis of
microscopy images of unstained blood smears include overlap-
ping cells and oddly shaped cells. Our approach creates robust
templates to detect infected and uninfected red cells. Histogram
of Oriented Gradients (HOGs) features are extracted from
templates and used to train a classifier offline. Next, the Viola-
Jones object detection framework is applied to detect infected
and uninfected red cells and the image background. Results
show our approach out-performs classification approaches with
PCA features by 50% and cell detection algorithms applying
Hough transforms by 24%.

Majority of related work are designed to automatically
detect stained parasites in blood smears. Although it is more
challenging to design algorithms for unstained parasites, our
methods will allow analysis of parasite progression under
different drug treatments.

I. INTRODUCTION

Malaria is the one of the serious infectious diseases
in tropical regions with about 3.2 billion people at risk.
according to the World Malaria Report, about 438 thousand
deaths were caused by malaria and there were more than
200 million new cases of malaria in 2015 [1]. The definitive
diagnosis of malaria infection is done by searching for par-
asite in blood slides through a microscope. Although newer
techniques have been introduced [2], blood smear exami-
nation utilizing manual microscopy still remains “the gold
standard” when it comes to malaria diagnosis [3]. Diagnosis
applying a microscope requires special training, experience
and considerable expertise [4]. Several studies have shown
that manual microscopy is not a reliable screening method
when performed by non-experts especially in the rural areas
where malaria is endemic [5].

We present an approach to automatically detect malaria
parasites in unstained blood droplets. Majority of automated
image analysis algorithms are designed to detect parasites in
stained cells [7]. Related image processing algorithms for the
automated detection of malaria cells are applied on stained
cells. For example, a Giemsa stain can be utilized to stain to
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cell sample [6]. The malaria infected cell absorbs the stain
and typical malaria detection algorithms focus on isolating
such stained cells based on intensity of the infected cells.It is
more challenging to detect infected cells without any staining
due to the lack of contrast between infected and uninfected
cells. Furthermore, cells may overlap and there are oddly
shaped uninfected cells due to the blood smearing processing
which could be detected as infected ones.

This paper applies a machine learning approach to create
and match classifiers of infected and uninfected cells to
acquired microscopy images. The key to an accurate clas-
sifier is the choice of features to represent the cells. When a
red blood cells is infected with the parasite, its appearance
changes over time.

We build classifiers utilizing Histogram of oriented gradi-
ents (HOGs), a technique which calculate the histogram of
gradient directions of localized image regions. By dividing an
image into small regions and combining calculated histogram
of gradient directions of each region, the shape and appear-
ance of the object can be represented. With these classifiers,
we apply the Viola Jones object detection framework to
detect infected and uninfected cells. We compare our tech-
nique to cell detection algorithms utilizing Hough transform.
Furthermore, we compare the performance of HOG features
against other feature representation such as PCA. Results
show that our method outperforms both approaches.

This paper is organized as follows: Section 2 summarises
literature related to malaria parasite detection in red blood
cells. Section 3 presents our approach. Section 4 and 5
presents our results and conclusion.

II. LITERATURE REVIEW

Most known techniques developed to automatically detect
malaria infected red blood cells were applied on images
where the parasites were stained. In Purwar et. al [7],
the images were pre-processed applying local histogram
equalization. Segmentation methods applied include Chan-
Vese segmentation method, morphological operations and
Hough transform. The infected and uninfected cells were
grouped utilizing a probabilistic k-means clustering algo-
rithm. Ruberto et. al [8] applied morphologies methods and
thresholding to detect parasites in Giemsa stained blood
slides. The size of the red blood cells and the nuclei of
parasites were evaluated utilizing granulometry.

Ritter et. al [9], segmented cells applying thresholding and
separated cells that touch and refined cell boundaries with
Dijkstras shortest path algorithm. Diaz et. al [10] applied
a color pixel classifier to label each pixel as foreground
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(b) Dataset of infected cells

(d) Dataset of non-cell parts

(a) An original image

(c) Dataset of uninfected cells

Fig. 1. Example of original images and datasets

or background, followed by template matching to separate
clumped cells. Templates were constructed from parasite-
stained images utilizing Expected Maximization and utilized
to classify infection life stages of each cell.

In summary, the techniques reviewed to classify malaria
cells are designed for images of stained parasites. Hence, the
parasites can be distinctly detected. However, our approach
is designed for images with unstained parasites. Although it
is more challenging to detect cells with unstained parasites,
our methods will allow further observations of parasite
progression over time.

III. METHODOLOGY

We present a two-stage approach to detect infected cells.
The first stage applies a Viola-Jones object detection frame-
work with trained classifier to detect all red blood cells
from a blood droplet image. The second stage classifies
each segmented region to an infected or uninfected cell
applying morphological features. Figure 1(a) shows a typical
image of a blood smear. In order to train a classifier, we
create datasets of three object categories; images of infected
cells (Figure 1(b)),uninfected cells (Figure 1(c)) and regions
without a complete cell (Figure 1(d)).

A. Feature Descriptor Selection For Classifier

In order to build our object detector, we compare the
performance of different feature descriptors on our dataset.
The flowchart to test different feature descriptors is shown in
Figure 2. We compare the following feature descriptors; His-

Fig. 2. Flowchart to test the performance of classifiers

(c) A non-cell part

(d) Another non-cell part

Fig. 3. Visualization of the HOG feature descriptors for different templates.
Complete images of infected and uninfected cells (a) and (b) have similar
visualizations.

togram of Oriented Gradients (HOGs), Principal Component
Analysis (PCA) and GIST [16].

To create a HOG descriptor, the image is divided into small
regions, where a one-dimensional histogram of gradient
directions or edge directions is calculated. These histograms
are concatenated to represent the shape and appearance of the
object [11]. HOGs can capture very characteristic edges or
gradient structures of local shape. When small translations or
rotations happen, the local representation has an controllable
degree of invariance [11].

PCA converts a set of observations of possibly corre-
lated variables into a set of values of linearly uncorrelated
variables by orthogonal transformation. These are called
principal components. The goal is to extract the impor-
tant information from the whole data set and represent it.
Mathematically, PCA depends on the eigenvalue of positive
semi-definite matrices and the singular value decomposition
of rectangular matrices [14]. Figure 4 shows the top two
principal components for images with a whole cells (blue)
and otherwise (red).

12000

10000 -

@
2
3
s
i

=
@
£
&
g +
+
S + +
(5] * 4
T 6000
2 o 4
2 @ i
o ot
5 4000 L # O
& 0p ©

2000

[ 05 1 15 2 25 3
1st Principal Component x10%

Fig. 4. The top two principal components for images with a whole cells
(blue circles) and non whole cells(red crosses). From this visualization, it
is difficult to distinguish the different classes.

GIST descriptors can provide a rough description of the
scene structure. This feature representation contains statistics
of oriented structures in the input image. It can be applied
to predict the location, size and presence of the object in a
scene [17].

We build a classifier applying multi-class support vector
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machines (SVM) to determine the best feature descriptor
to classify our three object categories. Probabilistic error-
correcting output codes (ECOC) is utilized to solve the multi-
class SVM [12]. In this approach, the posterior probabilities
of the object categories are calculated in addition to the labels
from the SVM. The normalized scores of probabilities are
ranked and the best label is chosen as the object category.

B. Two stage approach to cell detection and classification

With the feature descriptors selected, we develop a two
stage approach to detect infected and uninfected cells. The
flowchart of the two stage approach applied to detect infected
cells in the raw image is given in Figure 5

Fig. 5. Flowchart shows the two-stage approach: In the first stage, we
detect cells in the raw image. The second stage classifies the cells found
into healthy or infected.

In the first stage, we apply ViolaJones object detection
framework to build an object detector for detecting cells [13].
This framework has three steps. In the first step, we extract
features from the image applying a selected feature descrip-
tor, described in Section IIIA. Next, Adaboost is applied to
train a “strong” classifier by combining weighted “weak”
classifiers. Finally, a cascade detector is built to detect cells
in all sub-windows.

The steps to build a strong classifier with an Adaboost
(Adaptive Boosting) algorithm are described in [13]. We
assign the same weights all the instances (labelled images).
Adaboost then trains a base classifier and increases the
weights of the incorrectly classified instances. This algorithm
is iterated multiple times. Each time, the algorithm applies
a different classifier with the updated weights.

Cascading is a method to concatenate classifiers trained
by Adaboost. The whole process of cascading is in the
form of a degenerate decision tree [12]. In the first layer,
the calculated number of positive samples are utilized and
negative samples are generated. In the second layer, all
the positive samples and negative samples generated in the
first layer are classified. The wrongly classified positive
samples are discarded. Positive samples which are classified
correctly are kept as positive samples in next layer. The
negative samples which are classified as positive are utilized
as negative samples in next layer. This procedure is repeated
in the following layers.

We compare the Viola Jones object detector for cell detec-
tion to Hough transform. The concept of Hough transform
method is to extract the features of any shape present in the
image [15]. The red blood cells are circular in shape and can
be found utilizing a circular Hough transform.

Fig. 6. Example of results given by cascade object detector: Red rectangles
represent cells found in the raw image. Cells on the fringes are ignored

In the second stage, we perform additional operations on
the cell regions found in the first stage. These crop image
regions have different dimensions. Here, we classify the cells
into infected and uninfected cells applying four approaches,
which are:

1) An additional Viola-Jones object detector is applied as
the cell size varies. Here, we utilize samples of infected
cells as positive templates and uninfected cells as negative
templates to build the detector.

2) In our second approach, we combine the object detector
in 1) with circular Hough transforms. In the ring stage of
malaria infection, we can see a small circular ring inside
the cell. As we know the diameter range of this ring, we
can find cells in this stage infection with circular Hough
transform.

3) Our third approach combines a cascade objector detector
and Hough transform in 2) with intensity thresholding. At
the later stages of infection, the parasites appear at dark
small regions inside the cell. Hence, we apply intensity
thresholding to find dark regions, followed by size and
aspect ratio to detect infected cells at this stage.

4) In our final approach, we combine the object detector in
1) and Hough transform in 2) with intensity thresholding
of the red channel. From our images, parasites at the later
stage appear redder than other regions. Hence, we can
apply color thresholding to find regions with a higher red
intensity to detect infected cells.

IV. RESULTS
A. Comparing feature descriptors

To train classifiers, templates of cells and background were
extracted from phase contrast microscopy images of blood.
We acquired 62 templates of infected cells, 200 templates of
uninfected cells and 300 templates of non-cell parts. From
the total of 562 templates, we selected 300 of them as train-
ing set and the remainder is the test set. We cross-validated
our results to ensure there are not biases by running our
classifier 10 times, randomly selecting the test and training
sets. We compare the senstivity and specifivity of the results.
We define Sentivity = True Positives/Total Positives
and Specificity = True Negatives/Total Negatives
Table I shows classification accuracy with PCA, HOGs and
GIST feature descriptors. We found that HOGs and GIST
descriptors outperform PCA. Classifying with GIST feature
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TABLE I
A COMPARISON OF DIFFERENT DESCRIPTORS TO CLASSIFY IMAGES
WITH A WHOLE CELL AND WITHOUT

Sensitivity Specificity
PCA 0.4722 0.6232
HOG 0.9912 0.9967
GIST 0.9823 1.0000
TABLE II

RESULTS FROM TRAINING THE CLASSIFIER ON HOG FEATURES

Classified as | Classified as | Classified
infected cell uninfected as non-cell
cell parts
Infected cell 0.4501 0.5242 0.0257
Uninfected cell 0.0943 0.9001 0.0051
Non-cell parts 0.0036 0.0083 0.9881

descriptors results in slightly less true positives in compari-
son with HOGs. In addition, applying GIST is more compu-
tationally expensive. Therefore, we select HOG as the best
feature descriptor for our application. If we classify infected
and uninfected cells with non-cells with HOG descriptors in
a single stage, a large proportion (52%) of infected cells are
classified as infected cells (Table II).Therefore, we apply a
two-stage approach to detected infected cells.

B. The two stage approach

We acquired 43 images of malaria culture blood droplets
on microscopy slides. We select the first 24 to acquire
templates to train classifiers. The remainder as applied as
test images. Table III shows the cascade object detector
with HOG features achieved 93% accuracy outperforming a
circular Hough transform (69%). A circular Hough transform
is designed to detect circular objects. This approach failed
to detect some red blood cells which shriveled up in the
sample preparation process. A second stage classifier was
applied to detect infected cells from the red blood cells
image regions extracted with the cascade objector. Table
IV shows the results from four approaches applied. Results
show that the best second stage detector combines a cascade
objector detector, circular Hough transforms and intensity
thresholding.

V. CONCLUSIONS

Infected red blood cells are automatically detected from
microscopy images applying cascade detectors combined
with Hough transform and intensity thresholding. A larger
data set could be acquired to improve the performance of our
classifiers. The performance of different feature descriptors
can be explored. If this approach can be applied to build a
independent software, it can be utilized to offer convenient
diagnosis and expanded to diagnose other diseases.
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